Computing Approximate GCD of Univariate Polynomials by Structure Total Least Norm

نویسندگان

  • Lihong Zhi
  • Zhengfeng Yang
چکیده

The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certified 2-GCD for a given tolerance 2. The running time of our algorithm is polynomial in the degrees of polynomials. We also show the performance of the algorithms on a set of univariate polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Low Rank Approximation of a Sylvester Matrix

The task of determining the approximate greatest common divisor (GCD) of univariate polynomials with inexact coefficients can be formulated as computing for a given Sylvester matrix a new Sylvester matrix of lower rank whose entries are near the corresponding entries of that input matrix. We solve the approximate GCD problem by a new method based on structured total least norm (STLN) algorithms...

متن کامل

Computing Approximate GCD of Multivariate Polynomials by Structure Total Least Norm

The problem of approximating the greatest common divisor(GCD) for multivariate polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certif...

متن کامل

Computing Approximation GCD of Several Polynomials by Structured Total Least Norm

The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compression, computer algebra and speech encoding can be formulated as a low rank approximation problem with Sylvester matrix. This paper demonstrates a method based on structured total least norm (STLN) algorithm for matrices with Sylvester structure. We demonstrate the algorithm to compute...

متن کامل

Structured Low Rank Approximation of a Bezout Matrix

The task of determining the approximate greatest common divisor (GCD) of more than two univariate polynomials with inexact coefficients can be formulated as computing for a given Bezout matrix a new Bezout matrix of lower rank whose entries are near the corresponding entries of that input matrix. We present an algorithm based on a version of structured nonlinear total least squares (SNTLS) meth...

متن کامل

Displacement Structure in Computing Approximate Gcd of Univariate Polynomials

We propose a fast algorithm for computing approximate GCD of univariate polynomials with coefficients that are given only to a finite accuracy. The algorithm is based on a stabilized version of the generalized Schur algorithm for Sylvester matrix and its embedding. All computations can be done in O(n2) operations, where n is the sum of the degrees of polynomials. The stability of the algorithm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004